Package index
-
xpose4-packagexpose - The Xpose Package
-
simprazExample() - Function to create files for the simulated prazosin example in Xpose
-
simpraz.xpdb - Simulated prazosin Xpose database.
Classic interface
Xpose has a text based menu interface to make it simple for the user to invoke the Xpose specific functions. This interface is called Xpose Classic. Given the limitations a text based interface imposes, Xpose Classic is not very flexible but may be useful for quick assessment of a model and for learning to use Xpose.
-
xpose4() - Classic menu system for Xpose 4
Data import and database manipulation
Functions for managing the inporting of data, visualization of that data and manipulating the resulting Xpose database.
-
xpose.data() - Create an Xpose data object
-
data.checkout() - Check through the source dataset to detect problems
-
xvardef()`xvardef<-`() - Extract and set Xpose variable definitions.
-
change.xvardef()`change.xvardef<-`() - Change Xpose variable definitions.
-
change.parm() - Change parameter scope.
-
change.var.name() - Changes the name of an Xpose data item
-
change.xlabel() - Changes the label of an Xpose data item
-
add.absval()add.dichot()add.exp()add.log()add.tad() - Column-transformation functions for Xpose 4
-
change.ab.graph.par()change.bw.graph.par()change.cond.graph.par()change.dil.graph.par()change.label.par()change.lm.graph.par()change.misc.graph.par()change.pi.graph.par()change.smooth.graph.par() - Functions changing variable definitions in Xpose 4
-
change.cat.cont()`change.cat.cont<-`()change.cat.levels()`change.cat.levels<-`()change.dv.cat.levels()`change.dv.cat.levels<-`()change.miss()change.subset()get.doc()set.doc() - Functions changing miscellaneous parameter settings in Xpose 4
-
compute.cwres()xpose.calculate.cwres() - Compute the Conditional Weighted Residuals
-
Data()`Data<-`()SData()`SData<-`() - Extract or assign data from an xpose.data object.
-
db.names() - Prints the contents of an Xpose data object
-
export.graph.par()xpose.write() - Exports Xpose graphics settings to a file.
-
export.variable.definitions() - Exports Xpose variable definitions to a file from an Xpose data object.
-
import.graph.par() - Imports Xpose graphics settings from a file to an Xpose data object.
-
import.variable.definitions() - Imports Xpose variable definitions from a file to an Xpose data object.
-
make.sb.data() - Make stacked bar data set.
-
nsim() - Extract or set the value of the Nsim slot.
-
cov.summary()parm.summary() - Summarize individual parameter values and covariates
-
read.TTE.sim.data() - Read (repeated) time-to-event simulation data files.
-
read.nm.tables() - Reading NONMEM table files
-
calc.npar()create.parameter.list()read.lst() - Read NONMEM output files into Xpose 4
-
read_nm_table() - Read NONMEM table files produced from simulation.
-
simprazExample() - Function to create files for the simulated prazosin example in Xpose
-
tabulate.parameters() - Tabulate the population parameter estimates
-
xlabel()`xlabel<-`() - Extract and set labels for Xpose data items.
-
xpose.print() - Summarize an xpose database
-
xsubset()`xsubset<-`() - Extract or set the value of the Subset slot.
-
dv.vs.idv() - Observations (DV) plotted against the independent variable (IDV) for Xpose 4
-
pred.vs.idv() - Population predictions (PRED) plotted against the independent variable (IDV) for Xpose 4
-
ipred.vs.idv() - Individual predictions (IPRED) plotted against the independent variable (IDV) for Xpose 4
-
cov.hist()parm.hist()ranpar.hist() - Plot the parameter or covariate distributions using a histogram
-
cov.qq()parm.qq()ranpar.qq() - Plot the parameter or covariate distributions using quantile-quantile (Q-Q) plots
-
cov.splom()parm.splom()ranpar.splom() - Plot scatterplot matrices of parameters, random parameters or covariates
-
cov.summary()parm.summary() - Summarize individual parameter values and covariates
-
cat.dv.vs.idv.sb() - Categorical observations vs. independent variable using stacked bars.
-
kaplan.plot() - Kaplan-Meier plots of (repeated) time-to-event data
-
dv.preds.vs.idv() - Observations (DV), individual predictions (IPRED) and population predictions (IPRED) plotted against the independent variable (IDV), for Xpose 4
-
ind.plots() - Observations (DV), individual predictions (IPRED) and population predictions (PRED) are plotted against the independent variable for every individual in the dataset, for Xpose 4
-
basic.gof() - Basic goodness-of-fit plots, for Xpose 4
-
addit.gof() - Additional goodness-of-fit plots, for Xpose 4
-
runsum() - Print run summary in Xpose 4
-
dv.vs.pred() - Observations (DV) plotted against population predictions (PRED) for Xpose 4
-
dv.vs.pred.by.cov() - Dependent variable vs population predictions, conditioned on covariates, for Xpose 4
-
dv.vs.pred.by.idv() - Dependent variable vs population predictions, conditioned on independent variable, for Xpose 4
-
dv.vs.pred.ipred() - Observations (DV) are plotted against individual predictions (IPRED) and population predictions (PRED), for Xpose 4
-
dv.vs.ipred() - Observations (DV) plotted against individual predictions (IPRED) for Xpose 4
-
dv.vs.ipred.by.cov() - Dependent variable vs individual predictions, conditioned on covariates, for Xpose 4
-
dv.vs.ipred.by.idv() - Dependent variable vs individual predictions, conditioned on independent variable, for Xpose 4
-
cwres.vs.idv() - Population conditional weighted residuals (CWRES) plotted against the independent variable (IDV) for Xpose 4
-
cwres.vs.idv.bw() - Box-and-whisker plot of conditional weighted residuals vs the independent variable for Xpose 4
-
wres.vs.idv() - Population weighted residuals (WRES) plotted against the independent variable (IDV) for Xpose 4
-
wres.vs.idv.bw() - Box-and-whisker plot of weighted residuals vs the independent variable for Xpose 4
-
iwres.vs.idv() - Individual weighted residuals (IWRES) plotted against the independent variable (IDV) for Xpose 4
-
cwres.wres.vs.idv() - Weighted residuals (WRES) and conditional WRES (CWRES) plotted against the independent variable (IDV)
-
cwres.wres.vs.pred() - Weighted residuals (WRES) and conditional WRES (CWRES) plotted against the population predictions (PRED)
-
cwres.vs.pred() - Population conditional weighted residuals (CWRES) plotted against population predictions (PRED) for Xpose 4
-
cwres.vs.pred.bw() - Box-and-whisker plot of conditional weighted residuals vs population predictions for Xpose 4
-
cwres.vs.cov() - Conditional Weighted residuals (CWRES) plotted against covariates, for Xpose 4
-
wres.vs.pred() - Population weighted residuals (WRES) plotted against population predictions (PRED) for Xpose 4
-
wres.vs.pred.bw() - Box-and-whisker plot of weighted residuals vs population predictions for Xpose 4
-
wres.vs.cov() - Weighted residuals (WRES) plotted against covariates, for Xpose 4
-
absval.cwres.vs.cov.bw() - Absolute conditional weighted residuals vs covariates for Xpose 4
-
absval.cwres.vs.pred() - Absolute population conditional weighted residuals vs population predictions for Xpose 4
-
absval.cwres.vs.pred.by.cov() - Absolute value of the conditional weighted residuals vs. population predictions, conditioned on covariates, for Xpose 4
-
absval.wres.vs.cov.bw() - Absolute weighted residuals vs covariates for Xpose 4
-
absval.wres.vs.idv() - Absolute value of (C)WRES vs. independent variable plot in Xpose4.
-
absval.wres.vs.pred() - Absolute population weighted residuals vs population predictions for Xpose 4
-
absval.wres.vs.pred.by.cov() - Absolute population weighted residuals vs population predictions, conditioned on covariates, for Xpose 4
-
absval.iwres.cwres.vs.ipred.pred()absval.iwres.wres.vs.ipred.pred() - Absolute population weighted residuals vs population predictions, and absolute individual weighted residuals vs individual predictions, for Xpose 4
-
absval.iwres.vs.cov.bw() - box and whisker plots of the absolute value of the individual weighted residuals vs. covariates
-
absval.iwres.vs.idv() - absolute value of the individual weighted residuals vs. the independent variable
-
absval.iwres.vs.ipred() - Absolute individual weighted residuals vs individual predictions for Xpose 4
-
absval.iwres.vs.ipred.by.cov() - Absolute individual weighted residuals vs individual predictions, conditioned on covariates, for Xpose 4
-
absval.iwres.vs.pred() - Absolute individual weighted residuals vs population predictions or independent variable for Xpose 4
-
cwres.dist.hist() - Histogram of conditional weighted residuals (CWRES), for Xpose 4
-
wres.dist.hist() - Histogram of weighted residuals (WRES), for Xpose 4
-
iwres.dist.hist() - Histogram of individual weighted residuals (IWRES), for Xpose 4
-
cwres.dist.qq() - Quantile-quantile plot of conditional weighted residuals (CWRES), for Xpose 4
-
wres.dist.qq() - Quantile-quantile plot of weighted residuals (WRES), for Xpose 4
-
iwres.dist.qq() - Quantile-quantile plot of individual weighted residuals (IWRES), for Xpose 4
-
ind.plots.cwres.hist()ind.plots.wres.hist() - Histograms of weighted residuals for each individual in an Xpose data object, for Xpose 4
-
ind.plots.cwres.qq()ind.plots.wres.qq() - Quantile-quantile plots of weighted residuals for each individual in an Xpose data object, for Xpose 4
-
autocorr.cwres() - Autocorrelation of conditional weighted residuals for Xpose 4
-
autocorr.iwres() - autocorrelation of the individual weighted residuals
-
autocorr.wres() - Autocorrelation of weighted residuals for Xpose 4
-
cov.hist()parm.hist()ranpar.hist() - Plot the parameter or covariate distributions using a histogram
-
cov.qq()parm.qq()ranpar.qq() - Plot the parameter or covariate distributions using quantile-quantile (Q-Q) plots
-
cov.splom()parm.splom()ranpar.splom() - Plot scatterplot matrices of parameters, random parameters or covariates
-
parm.vs.parm() - Plot parameters vs other parameters
-
tabulate.parameters() - Tabulate the population parameter estimates
-
cov.summary()parm.summary() - Summarize individual parameter values and covariates
-
basic.model.comp() - Basic model comparison plots, for Xpose 4
-
add.model.comp() - Additional model comparison plots, for Xpose 4
-
absval.dcwres.vs.cov.model.comp()absval.dipred.vs.cov.model.comp()absval.diwres.vs.cov.model.comp()absval.dpred.vs.cov.model.comp()absval.dwres.vs.cov.model.comp() - Model comparison plots, of absolute differences in goodness-of-fit predictors against covariates, for Xpose 4
-
dOFV.vs.cov() - Change in individual objective function value vs. covariate value.
-
dOFV.vs.id() - Change in Objective function value vs. removal of individuals.
-
dOFV1.vs.dOFV2() - Change in individual objective function value 1 vs. individual objective function value 2.
-
parm.vs.cov() - Parameters plotted against covariates, for Xpose 4
-
ranpar.vs.cov() - Random parameters plotted against covariates, for Xpose 4
GAM functions
Functions take an Xpose object and performs a generalized additive model (GAM) stepwise search for influential covariates on a single model parameter.
-
xpose.gam() - Stepwise GAM search for covariates on a parameter (Xpose 4)
-
xp.akaike.plot()xp.cook()xp.ind.inf.fit()xp.ind.inf.terms()xp.ind.stud.res()xp.plot()xp.summary() - GAM functions for Xpose 4
-
xp.get.disp() - Default function for calculating dispersion in
xpose.gam.
-
xp.scope3() - Define a scope for the gam. Used as default input to the
scopeargument inxpose.gam
-
xpose.bootgam() - Title
-
bootgam.print() - Print summary information for a bootgam or bootscm
-
xp.distr.mod.size() - Plot of model size distribution for a bootgam or bootscm
-
xp.inc.cond.stab.cov() - Trace plots for conditional indices
-
xp.inc.ind.cond.stab.cov() - Trace plots for conditional indices rper replicate number
-
xp.inc.prob() - Inclusion frequency plot
-
xp.inc.prob.comb.2() - Inclusion frequency plot for combination of covariates.
-
xp.inc.stab.cov() - Inclusion stability plot A plot of the inclusion frequency of covariates vs bootgam/bootscm iteration number. This plot can be used to evaluate whether sufficient iterations have been performed.
-
xp.incl.index.cov() - Plot of inclusion index of covariates.
-
xp.incl.index.cov.comp() - Inclusion index individuals, compare between covariates.
-
xp.incl.index.cov.ind() - Individual inclusion index
-
xpose.VPC() - Visual Predictive Check (VPC) using XPOSE
-
xpose.VPC.both() - Xpose Visual Predictive Check (VPC) for both continuous and Limit of Quantification data.
-
xpose.VPC.categorical() - Xpose visual predictive check for categorical data.
-
npc.coverage() - Function to plot the coverage of the Numerical Predictive Check
-
kaplan.plot() - Kaplan-Meier plots of (repeated) time-to-event data
-
cat.pc() - Categorical (visual) predictive check.
-
read.npc.vpc.results() - Read the results file from a Numerical or Visual Predictive Check run in PsN
-
read.vpctab() - Read the vpctab file from PsN into Xpose
PsN functions
These functions are the interface between Xpose and PsN, i.e. they do not post-process NONMEM output but rather PsN output.
-
boot.hist() - Function to create histograms of results from the
bootstraptool in PsN
-
bootscm.import() - Import bootscm data into R/Xpose
-
randtest.hist() - Function to create a histogram of results from the randomization test tool (
randtest) in PsN
-
bootgam.print() - Print summary information for a bootgam or bootscm
-
xp.boot.par.est() - Compare parameter estimates for covariate coefficients
-
xp.boot.par.est.corr() - Correlations between covariate coefficients
-
xp.daic.npar.plot() - Distribution of difference in AIC
-
xp.distr.mod.size() - Plot of model size distribution for a bootgam or bootscm
-
xp.dofv.npar.plot() - Distribution of difference in OFV
-
xp.dofv.plot() - OFV difference (optimism) plot.
-
xp.inc.cond.stab.cov() - Trace plots for conditional indices
-
xp.inc.ind.cond.stab.cov() - Trace plots for conditional indices rper replicate number
-
xp.inc.prob() - Inclusion frequency plot
-
xp.inc.prob.comb.2() - Inclusion frequency plot for combination of covariates.
-
xp.inc.stab.cov() - Inclusion stability plot A plot of the inclusion frequency of covariates vs bootgam/bootscm iteration number. This plot can be used to evaluate whether sufficient iterations have been performed.
-
xp.incl.index.cov() - Plot of inclusion index of covariates.
-
xp.incl.index.cov.comp() - Inclusion index individuals, compare between covariates.
-
xp.incl.index.cov.ind() - Individual inclusion index
Generic functions
Generic wrapper functions around the lattice functions. These functions can be invoked by the user but require quite detailed instructions to generate the desired output.
-
gof() - Structured goodness of fit diagnostics.
-
xpose.multiple.plot() - Create and object with class "xpose.multiple.plot".
-
xpose.multiple.plot.default() - Xpose 4 generic function for plotting multiple lattice objects on one page
-
xpose.panel.bw() - Default box-and-whisker panel function for Xpose 4
-
xpose.panel.default() - Default panel function for Xpose 4
-
xpose.panel.histogram() - Default histogram panel function for Xpose 4
-
xpose.panel.qq() - Default QQ panel function for Xpose 4
-
xpose.panel.splom() - Scatterplot matrix panel function for Xpose 4
-
xpose.plot.bw() - The generic Xpose functions for box-and-whisker plots
-
xpose.plot.default() - The Xpose 4 generic functions for continuous y-variables.
-
xpose.plot.histogram() - The Xpose 4 generic functions for continuous y-variables.
-
xpose.plot.qq() - The generic Xpose functions for QQ plots
-
xpose.plot.splom() - The Xpose 4 generic functions for scatterplot matrices.
-
add.grid.table() - Print tables or text in a grid object
-
create.xpose.plot.classes() - Create xpose.multiple.plot class.
-
createXposeClasses() - This function creates the Xpose data classes ("xpose.data" and "xpose.prefs")
-
print(<xpose.multiple.plot>) - Print an Xpose multiple plot object.
-
reset.graph.par() - Resets Xpose variable definitions to factory settings
-
xpose.data-classnumeric_or_NULL-classdata.frame_or_NULL-class - Class xpose.data
-
xpose.license.citation() - Displays the Xpose license and citation information
-
xpose.multiple.plot-classlist_or_NULL-classlogical_or_numeric-classcharacter_or_NULL-class - Class for creating multiple plots in xpose
-
xpose.prefs-classcharacter_or_numeric-class - Class "xpose.prefs"
-
xpose.string.print() - Print a pretty string.
-
xpose.logTicks()xpose.yscale.components.log10()xpose.xscale.components.log10() - Functions to create nice looking axes when using Log scales.