Function reference
-
xpose4-package
xpose
- The Xpose Package
-
simprazExample()
- Function to create files for the simulated prazosin example in Xpose
-
simpraz.xpdb
- Simulated prazosin Xpose database.
Classic interface
Xpose has a text based menu interface to make it simple for the user to invoke the Xpose specific functions. This interface is called Xpose Classic. Given the limitations a text based interface imposes, Xpose Classic is not very flexible but may be useful for quick assessment of a model and for learning to use Xpose.
-
xpose4()
- Classic menu system for Xpose 4
Data import and database manipulation
Functions for managing the inporting of data, visualization of that data and manipulating the resulting Xpose database.
-
xpose.data()
- Create an Xpose data object
-
data.checkout()
- Check through the source dataset to detect problems
-
xvardef()
`xvardef<-`()
- Extract and set Xpose variable definitions.
-
change.xvardef()
`change.xvardef<-`()
- Change Xpose variable definitions.
-
change.parm()
- Change parameter scope.
-
change.var.name()
- Changes the name of an Xpose data item
-
change.xlabel()
- Changes the label of an Xpose data item
-
add.absval()
add.dichot()
add.exp()
add.log()
add.tad()
- Column-transformation functions for Xpose 4
-
change.ab.graph.par()
change.bw.graph.par()
change.cond.graph.par()
change.dil.graph.par()
change.label.par()
change.lm.graph.par()
change.misc.graph.par()
change.pi.graph.par()
change.smooth.graph.par()
- Functions changing variable definitions in Xpose 4
-
change.cat.cont()
`change.cat.cont<-`()
change.cat.levels()
`change.cat.levels<-`()
change.dv.cat.levels()
`change.dv.cat.levels<-`()
change.miss()
change.subset()
get.doc()
set.doc()
- Functions changing miscellaneous parameter settings in Xpose 4
-
compute.cwres()
xpose.calculate.cwres()
- Compute the Conditional Weighted Residuals
-
Data()
`Data<-`()
SData()
`SData<-`()
- Extract or assign data from an xpose.data object.
-
db.names()
- Prints the contents of an Xpose data object
-
export.graph.par()
xpose.write()
- Exports Xpose graphics settings to a file.
-
export.variable.definitions()
- Exports Xpose variable definitions to a file from an Xpose data object.
-
import.graph.par()
- Imports Xpose graphics settings from a file to an Xpose data object.
-
import.variable.definitions()
- Imports Xpose variable definitions from a file to an Xpose data object.
-
make.sb.data()
- Make stacked bar data set.
-
nsim()
- Extract or set the value of the Nsim slot.
-
cov.summary()
parm.summary()
- Summarize individual parameter values and covariates
-
read.TTE.sim.data()
- Read (repeated) time-to-event simulation data files.
-
read.nm.tables()
- Reading NONMEM table files
-
calc.npar()
create.parameter.list()
read.lst()
- Read NONMEM output files into Xpose 4
-
read_nm_table()
- Read NONMEM table files produced from simulation.
-
simprazExample()
- Function to create files for the simulated prazosin example in Xpose
-
tabulate.parameters()
- Tabulate the population parameter estimates
-
xlabel()
`xlabel<-`()
- Extract and set labels for Xpose data items.
-
xpose.print()
- Summarize an xpose database
-
xsubset()
`xsubset<-`()
- Extract or set the value of the Subset slot.
-
dv.vs.idv()
- Observations (DV) plotted against the independent variable (IDV) for Xpose 4
-
pred.vs.idv()
- Population predictions (PRED) plotted against the independent variable (IDV) for Xpose 4
-
ipred.vs.idv()
- Individual predictions (IPRED) plotted against the independent variable (IDV) for Xpose 4
-
cov.hist()
parm.hist()
ranpar.hist()
- Plot the parameter or covariate distributions using a histogram
-
cov.qq()
parm.qq()
ranpar.qq()
- Plot the parameter or covariate distributions using quantile-quantile (Q-Q) plots
-
cov.splom()
parm.splom()
ranpar.splom()
- Plot scatterplot matrices of parameters, random parameters or covariates
-
cov.summary()
parm.summary()
- Summarize individual parameter values and covariates
-
cat.dv.vs.idv.sb()
- Categorical observations vs. independent variable using stacked bars.
-
kaplan.plot()
- Kaplan-Meier plots of (repeated) time-to-event data
-
dv.preds.vs.idv()
- Observations (DV), individual predictions (IPRED) and population predictions (IPRED) plotted against the independent variable (IDV), for Xpose 4
-
ind.plots()
- Observations (DV), individual predictions (IPRED) and population predictions (PRED) are plotted against the independent variable for every individual in the dataset, for Xpose 4
-
basic.gof()
- Basic goodness-of-fit plots, for Xpose 4
-
addit.gof()
- Additional goodness-of-fit plots, for Xpose 4
-
runsum()
- Print run summary in Xpose 4
-
dv.vs.pred()
- Observations (DV) plotted against population predictions (PRED) for Xpose 4
-
dv.vs.pred.by.cov()
- Dependent variable vs population predictions, conditioned on covariates, for Xpose 4
-
dv.vs.pred.by.idv()
- Dependent variable vs population predictions, conditioned on independent variable, for Xpose 4
-
dv.vs.pred.ipred()
- Observations (DV) are plotted against individual predictions (IPRED) and population predictions (PRED), for Xpose 4
-
dv.vs.ipred()
- Observations (DV) plotted against individual predictions (IPRED) for Xpose 4
-
dv.vs.ipred.by.cov()
- Dependent variable vs individual predictions, conditioned on covariates, for Xpose 4
-
dv.vs.ipred.by.idv()
- Dependent variable vs individual predictions, conditioned on independent variable, for Xpose 4
-
cwres.vs.idv()
- Population conditional weighted residuals (CWRES) plotted against the independent variable (IDV) for Xpose 4
-
cwres.vs.idv.bw()
- Box-and-whisker plot of conditional weighted residuals vs the independent variable for Xpose 4
-
wres.vs.idv()
- Population weighted residuals (WRES) plotted against the independent variable (IDV) for Xpose 4
-
wres.vs.idv.bw()
- Box-and-whisker plot of weighted residuals vs the independent variable for Xpose 4
-
iwres.vs.idv()
- Individual weighted residuals (IWRES) plotted against the independent variable (IDV) for Xpose 4
-
cwres.wres.vs.idv()
- Weighted residuals (WRES) and conditional WRES (CWRES) plotted against the independent variable (IDV)
-
cwres.wres.vs.pred()
- Weighted residuals (WRES) and conditional WRES (CWRES) plotted against the population predictions (PRED)
-
cwres.vs.pred()
- Population conditional weighted residuals (CWRES) plotted against population predictions (PRED) for Xpose 4
-
cwres.vs.pred.bw()
- Box-and-whisker plot of conditional weighted residuals vs population predictions for Xpose 4
-
cwres.vs.cov()
- Conditional Weighted residuals (CWRES) plotted against covariates, for Xpose 4
-
wres.vs.pred()
- Population weighted residuals (WRES) plotted against population predictions (PRED) for Xpose 4
-
wres.vs.pred.bw()
- Box-and-whisker plot of weighted residuals vs population predictions for Xpose 4
-
wres.vs.cov()
- Weighted residuals (WRES) plotted against covariates, for Xpose 4
-
absval.cwres.vs.cov.bw()
- Absolute conditional weighted residuals vs covariates for Xpose 4
-
absval.cwres.vs.pred()
- Absolute population conditional weighted residuals vs population predictions for Xpose 4
-
absval.cwres.vs.pred.by.cov()
- Absolute value of the conditional weighted residuals vs. population predictions, conditioned on covariates, for Xpose 4
-
absval.wres.vs.cov.bw()
- Absolute weighted residuals vs covariates for Xpose 4
-
absval.wres.vs.idv()
- Absolute value of (C)WRES vs. independent variable plot in Xpose4.
-
absval.wres.vs.pred()
- Absolute population weighted residuals vs population predictions for Xpose 4
-
absval.wres.vs.pred.by.cov()
- Absolute population weighted residuals vs population predictions, conditioned on covariates, for Xpose 4
-
absval.iwres.cwres.vs.ipred.pred()
absval.iwres.wres.vs.ipred.pred()
- Absolute population weighted residuals vs population predictions, and absolute individual weighted residuals vs individual predictions, for Xpose 4
-
absval.iwres.vs.cov.bw()
- box and whisker plots of the absolute value of the individual weighted residuals vs. covariates
-
absval.iwres.vs.idv()
- absolute value of the individual weighted residuals vs. the independent variable
-
absval.iwres.vs.ipred()
- Absolute individual weighted residuals vs individual predictions for Xpose 4
-
absval.iwres.vs.ipred.by.cov()
- Absolute individual weighted residuals vs individual predictions, conditioned on covariates, for Xpose 4
-
absval.iwres.vs.pred()
- Absolute individual weighted residuals vs population predictions or independent variable for Xpose 4
-
cwres.dist.hist()
- Histogram of conditional weighted residuals (CWRES), for Xpose 4
-
wres.dist.hist()
- Histogram of weighted residuals (WRES), for Xpose 4
-
iwres.dist.hist()
- Histogram of individual weighted residuals (IWRES), for Xpose 4
-
cwres.dist.qq()
- Quantile-quantile plot of conditional weighted residuals (CWRES), for Xpose 4
-
wres.dist.qq()
- Quantile-quantile plot of weighted residuals (WRES), for Xpose 4
-
iwres.dist.qq()
- Quantile-quantile plot of individual weighted residuals (IWRES), for Xpose 4
-
ind.plots.cwres.hist()
ind.plots.wres.hist()
- Histograms of weighted residuals for each individual in an Xpose data object, for Xpose 4
-
ind.plots.cwres.qq()
ind.plots.wres.qq()
- Quantile-quantile plots of weighted residuals for each individual in an Xpose data object, for Xpose 4
-
autocorr.cwres()
- Autocorrelation of conditional weighted residuals for Xpose 4
-
autocorr.iwres()
- autocorrelation of the individual weighted residuals
-
autocorr.wres()
- Autocorrelation of weighted residuals for Xpose 4
-
cov.hist()
parm.hist()
ranpar.hist()
- Plot the parameter or covariate distributions using a histogram
-
cov.qq()
parm.qq()
ranpar.qq()
- Plot the parameter or covariate distributions using quantile-quantile (Q-Q) plots
-
cov.splom()
parm.splom()
ranpar.splom()
- Plot scatterplot matrices of parameters, random parameters or covariates
-
parm.vs.parm()
- Plot parameters vs other parameters
-
tabulate.parameters()
- Tabulate the population parameter estimates
-
cov.summary()
parm.summary()
- Summarize individual parameter values and covariates
-
basic.model.comp()
- Basic model comparison plots, for Xpose 4
-
add.model.comp()
- Additional model comparison plots, for Xpose 4
-
absval.dcwres.vs.cov.model.comp()
absval.dipred.vs.cov.model.comp()
absval.diwres.vs.cov.model.comp()
absval.dpred.vs.cov.model.comp()
absval.dwres.vs.cov.model.comp()
- Model comparison plots, of absolute differences in goodness-of-fit predictors against covariates, for Xpose 4
-
dOFV.vs.cov()
- Change in individual objective function value vs. covariate value.
-
dOFV.vs.id()
- Change in Objective function value vs. removal of individuals.
-
dOFV1.vs.dOFV2()
- Change in individual objective function value 1 vs. individual objective function value 2.
-
parm.vs.cov()
- Parameters plotted against covariates, for Xpose 4
-
ranpar.vs.cov()
- Random parameters plotted against covariates, for Xpose 4
GAM functions
Functions take an Xpose object and performs a generalized additive model (GAM) stepwise search for influential covariates on a single model parameter.
-
xpose.gam()
- Stepwise GAM search for covariates on a parameter (Xpose 4)
-
xp.akaike.plot()
xp.cook()
xp.ind.inf.fit()
xp.ind.inf.terms()
xp.ind.stud.res()
xp.plot()
xp.summary()
- GAM functions for Xpose 4
-
xp.get.disp()
- Default function for calculating dispersion in
xpose.gam
.
-
xp.scope3()
- Define a scope for the gam. Used as default input to the
scope
argument inxpose.gam
-
xpose.bootgam()
- Title
-
bootgam.print()
- Print summary information for a bootgam or bootscm
-
xp.distr.mod.size()
- Plot of model size distribution for a bootgam or bootscm
-
xp.inc.cond.stab.cov()
- Trace plots for conditional indices
-
xp.inc.ind.cond.stab.cov()
- Trace plots for conditional indices rper replicate number
-
xp.inc.prob()
- Inclusion frequency plot
-
xp.inc.prob.comb.2()
- Inclusion frequency plot for combination of covariates.
-
xp.inc.stab.cov()
- Inclusion stability plot A plot of the inclusion frequency of covariates vs bootgam/bootscm iteration number. This plot can be used to evaluate whether sufficient iterations have been performed.
-
xp.incl.index.cov()
- Plot of inclusion index of covariates.
-
xp.incl.index.cov.comp()
- Inclusion index individuals, compare between covariates.
-
xp.incl.index.cov.ind()
- Individual inclusion index
-
xpose.VPC()
- Visual Predictive Check (VPC) using XPOSE
-
xpose.VPC.both()
- Xpose Visual Predictive Check (VPC) for both continuous and Limit of Quantification data.
-
xpose.VPC.categorical()
- Xpose visual predictive check for categorical data.
-
npc.coverage()
- Function to plot the coverage of the Numerical Predictive Check
-
kaplan.plot()
- Kaplan-Meier plots of (repeated) time-to-event data
-
cat.pc()
- Categorical (visual) predictive check.
-
read.npc.vpc.results()
- Read the results file from a Numerical or Visual Predictive Check run in PsN
-
read.vpctab()
- Read the vpctab file from PsN into Xpose
PsN functions
These functions are the interface between Xpose and PsN, i.e. they do not post-process NONMEM output but rather PsN output.
-
boot.hist()
- Function to create histograms of results from the
bootstrap
tool in PsN
-
bootscm.import()
- Import bootscm data into R/Xpose
-
randtest.hist()
- Function to create a histogram of results from the randomization test tool
(
randtest
) in PsN
-
bootgam.print()
- Print summary information for a bootgam or bootscm
-
xp.boot.par.est()
- Compare parameter estimates for covariate coefficients
-
xp.boot.par.est.corr()
- Correlations between covariate coefficients
-
xp.daic.npar.plot()
- Distribution of difference in AIC
-
xp.distr.mod.size()
- Plot of model size distribution for a bootgam or bootscm
-
xp.dofv.npar.plot()
- Distribution of difference in OFV
-
xp.dofv.plot()
- OFV difference (optimism) plot.
-
xp.inc.cond.stab.cov()
- Trace plots for conditional indices
-
xp.inc.ind.cond.stab.cov()
- Trace plots for conditional indices rper replicate number
-
xp.inc.prob()
- Inclusion frequency plot
-
xp.inc.prob.comb.2()
- Inclusion frequency plot for combination of covariates.
-
xp.inc.stab.cov()
- Inclusion stability plot A plot of the inclusion frequency of covariates vs bootgam/bootscm iteration number. This plot can be used to evaluate whether sufficient iterations have been performed.
-
xp.incl.index.cov()
- Plot of inclusion index of covariates.
-
xp.incl.index.cov.comp()
- Inclusion index individuals, compare between covariates.
-
xp.incl.index.cov.ind()
- Individual inclusion index
Generic functions
Generic wrapper functions around the lattice functions. These functions can be invoked by the user but require quite detailed instructions to generate the desired output.
-
gof()
- Structured goodness of fit diagnostics.
-
xpose.multiple.plot()
- Create and object with class "xpose.multiple.plot".
-
xpose.multiple.plot.default()
- Xpose 4 generic function for plotting multiple lattice objects on one page
-
xpose.panel.bw()
- Default box-and-whisker panel function for Xpose 4
-
xpose.panel.default()
- Default panel function for Xpose 4
-
xpose.panel.histogram()
- Default histogram panel function for Xpose 4
-
xpose.panel.qq()
- Default QQ panel function for Xpose 4
-
xpose.panel.splom()
- Scatterplot matrix panel function for Xpose 4
-
xpose.plot.bw()
- The generic Xpose functions for box-and-whisker plots
-
xpose.plot.default()
- The Xpose 4 generic functions for continuous y-variables.
-
xpose.plot.histogram()
- The Xpose 4 generic functions for continuous y-variables.
-
xpose.plot.qq()
- The generic Xpose functions for QQ plots
-
xpose.plot.splom()
- The Xpose 4 generic functions for scatterplot matrices.
-
add.grid.table()
- Print tables or text in a grid object
-
create.xpose.plot.classes()
- Create xpose.multiple.plot class.
-
createXposeClasses()
- This function creates the Xpose data classes ("xpose.data" and "xpose.prefs")
-
print(<xpose.multiple.plot>)
- Print an Xpose multiple plot object.
-
reset.graph.par()
- Resets Xpose variable definitions to factory settings
-
xpose.data-class
numeric_or_NULL-class
data.frame_or_NULL-class
- Class xpose.data
-
xpose.license.citation()
- Displays the Xpose license and citation information
-
xpose.multiple.plot-class
list_or_NULL-class
logical_or_numeric-class
character_or_NULL-class
- Class for creating multiple plots in xpose
-
xpose.prefs-class
character_or_numeric-class
- Class "xpose.prefs"
-
xpose.string.print()
- Print a pretty string.
-
xpose.logTicks()
xpose.yscale.components.log10()
xpose.xscale.components.log10()
- Functions to create nice looking axes when using Log scales.