Xpose visual predictive check for categorical data.
Source:R/xpose.VPC.categorical.R
xpose.VPC.categorical.Rd
Xpose visual predictive check for categorical data (binary, ordered categorical and count data).
Usage
xpose.VPC.categorical(
vpc.info = "vpc_results.csv",
vpctab = dir(pattern = "^vpctab")[1],
object = NULL,
subset = NULL,
main = "Default",
main.sub = "Default",
main.sub.cex = 0.85,
real.col = 4,
real.lty = "b",
real.cex = 1,
real.lwd = 1,
median.line = FALSE,
median.col = "darkgrey",
median.lty = 1,
ci.lines = FALSE,
ci.col = "blue",
ci.lines.col = "darkblue",
ci.lines.lty = 3,
xlb = "Default",
ylb = "Proportion of Total",
force.x.continuous = FALSE,
level.to.plot = NULL,
max.plots.per.page = 1,
rug = TRUE,
rug.col = "orange",
censored = FALSE,
...
)
Arguments
- vpc.info
Name of PSN file to use. File will come from
VPC
command in PsN.- vpctab
Name of vpctab file produced from PsN.
- object
Xpose data object.
- subset
Subset of data to look at.
- main
Title for plot.
- main.sub
Used for names above each plot when using multiple plots. Should be a vector, e.g.
c("title 1","title 2")
.- main.sub.cex
Size of
main.sub
- real.col
Color of real line.
- real.lty
Real line type.
- real.cex
Size of real line.
- real.lwd
Width of real line.
- median.line
Dray a median line?
- median.col
Color of median line.
- median.lty
median line type.
- ci.lines
Lines marking confidence interval?
- ci.col
Color of CI area.
- ci.lines.col
Color of CI lines.
- ci.lines.lty
Type of CI lines.
- xlb
X-axis label. If other than "default"" passed directly to
xyplot
.- ylb
Y-axis label. Passed directly to
xyplot
.- force.x.continuous
For the x variable to be continuous.
- level.to.plot
Which levels of the variable to plot. Smallest level is 1, largest is number_of_levels. For example, with 4 levels, the largest level would be 4, the smallest would be 1.
- max.plots.per.page
The number of plots per page.
- rug
Should there be markings on the plot showing where the intervals for the VPC are?
- rug.col
Color of the rug.
- censored
Is this censored data? Censored data can be both below and above the limit of quantification.
- ...
Additional information passed to function.
See also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose4-package
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose4-package
Examples
if (FALSE) {
library(xpose4)
## move to the directory where results from PsN
## are found
cur.dir <- getwd()
setwd(paste(cur.dir,"/binary/vpc_36",sep=""))
xpose.VPC.categorical(level.to.plot=1,max.plots.per.page=4)
xpose.VPC.categorical(level.to.plot=1,max.plots.per.page=4,by="DOSE")
## ordered categorical plots
setwd(paste(cur.dir,"/ordered_cat/vpc_45",sep=""))
xpose.VPC.categorical()
## count
setwd(paste(cur.dir,"/count/vpc65b",sep=""))
xpose.VPC.categorical()
setwd(paste(cur.dir,"/count/vpc65a",sep=""))
xpose.VPC.categorical()
}