Xpose visual predictive check for categorical data.
Source:R/xpose.VPC.categorical.R
xpose.VPC.categorical.RdXpose visual predictive check for categorical data (binary, ordered categorical and count data).
Usage
xpose.VPC.categorical(
vpc.info = "vpc_results.csv",
vpctab = dir(pattern = "^vpctab")[1],
object = NULL,
subset = NULL,
main = "Default",
main.sub = "Default",
main.sub.cex = 0.85,
real.col = 4,
real.lty = "b",
real.cex = 1,
real.lwd = 1,
median.line = FALSE,
median.col = "darkgrey",
median.lty = 1,
ci.lines = FALSE,
ci.col = "blue",
ci.lines.col = "darkblue",
ci.lines.lty = 3,
xlb = "Default",
ylb = "Proportion of Total",
force.x.continuous = FALSE,
level.to.plot = NULL,
max.plots.per.page = 1,
rug = TRUE,
rug.col = "orange",
censored = FALSE,
...
)Arguments
- vpc.info
Name of PSN file to use. File will come from
VPCcommand in PsN.- vpctab
Name of vpctab file produced from PsN.
- object
Xpose data object.
- subset
Subset of data to look at.
- main
Title for plot.
- main.sub
Used for names above each plot when using multiple plots. Should be a vector, e.g.
c("title 1","title 2").- main.sub.cex
Size of
main.sub- real.col
Color of real line.
- real.lty
Real line type.
- real.cex
Size of real line.
- real.lwd
Width of real line.
- median.line
Dray a median line?
- median.col
Color of median line.
- median.lty
median line type.
- ci.lines
Lines marking confidence interval?
- ci.col
Color of CI area.
- ci.lines.col
Color of CI lines.
- ci.lines.lty
Type of CI lines.
- xlb
X-axis label. If other than "default"" passed directly to
xyplot.- ylb
Y-axis label. Passed directly to
xyplot.- force.x.continuous
For the x variable to be continuous.
- level.to.plot
Which levels of the variable to plot. Smallest level is 1, largest is number_of_levels. For example, with 4 levels, the largest level would be 4, the smallest would be 1.
- max.plots.per.page
The number of plots per page.
- rug
Should there be markings on the plot showing where the intervals for the VPC are?
- rug.col
Color of the rug.
- censored
Is this censored data? Censored data can be both below and above the limit of quantification.
- ...
Additional information passed to function.
See also
Other specific functions:
absval.cwres.vs.cov.bw(),
absval.cwres.vs.pred(),
absval.cwres.vs.pred.by.cov(),
absval.iwres.cwres.vs.ipred.pred(),
absval.iwres.vs.cov.bw(),
absval.iwres.vs.idv(),
absval.iwres.vs.ipred(),
absval.iwres.vs.ipred.by.cov(),
absval.iwres.vs.pred(),
absval.wres.vs.cov.bw(),
absval.wres.vs.idv(),
absval.wres.vs.pred(),
absval.wres.vs.pred.by.cov(),
absval_delta_vs_cov_model_comp,
addit.gof(),
autocorr.cwres(),
autocorr.iwres(),
autocorr.wres(),
basic.gof(),
basic.model.comp(),
cat.dv.vs.idv.sb(),
cat.pc(),
cov.splom(),
cwres.dist.hist(),
cwres.dist.qq(),
cwres.vs.cov(),
cwres.vs.idv(),
cwres.vs.idv.bw(),
cwres.vs.pred(),
cwres.vs.pred.bw(),
cwres.wres.vs.idv(),
cwres.wres.vs.pred(),
dOFV.vs.cov(),
dOFV.vs.id(),
dOFV1.vs.dOFV2(),
data.checkout(),
dv.preds.vs.idv(),
dv.vs.idv(),
dv.vs.ipred(),
dv.vs.ipred.by.cov(),
dv.vs.ipred.by.idv(),
dv.vs.pred(),
dv.vs.pred.by.cov(),
dv.vs.pred.by.idv(),
dv.vs.pred.ipred(),
gof(),
ind.plots(),
ind.plots.cwres.hist(),
ind.plots.cwres.qq(),
ipred.vs.idv(),
iwres.dist.hist(),
iwres.dist.qq(),
iwres.vs.idv(),
kaplan.plot(),
par_cov_hist,
par_cov_qq,
parm.vs.cov(),
parm.vs.parm(),
pred.vs.idv(),
ranpar.vs.cov(),
runsum(),
wres.dist.hist(),
wres.dist.qq(),
wres.vs.idv(),
wres.vs.idv.bw(),
wres.vs.pred(),
wres.vs.pred.bw(),
xpose.VPC(),
xpose.VPC.both(),
xpose4-package
Other PsN functions:
boot.hist(),
bootscm.import(),
npc.coverage(),
randtest.hist(),
read.npc.vpc.results(),
read.vpctab(),
xpose.VPC(),
xpose.VPC.both(),
xpose4-package
Examples
if (FALSE) { # \dontrun{
library(xpose4)
## move to the directory where results from PsN
## are found
cur.dir <- getwd()
setwd(paste(cur.dir,"/binary/vpc_36",sep=""))
xpose.VPC.categorical(level.to.plot=1,max.plots.per.page=4)
xpose.VPC.categorical(level.to.plot=1,max.plots.per.page=4,by="DOSE")
## ordered categorical plots
setwd(paste(cur.dir,"/ordered_cat/vpc_45",sep=""))
xpose.VPC.categorical()
## count
setwd(paste(cur.dir,"/count/vpc65b",sep=""))
xpose.VPC.categorical()
setwd(paste(cur.dir,"/count/vpc65a",sep=""))
xpose.VPC.categorical()
} # }