Absolute population conditional weighted residuals vs population predictions for Xpose 4
Source:R/absval.cwres.vs.pred.R
absval.cwres.vs.pred.Rd
This is a plot of absolute population conditional weighted residuals
(|CWRES|) vs population predictions (PRED), a specific function in Xpose 4.
It is a wrapper encapsulating arguments to the xpose.plot.default
function. Most of the options take their default values from xpose.data
object but may be overridden by supplying them as arguments.
Arguments
- object
An xpose.data object.
- idsdir
Direction for displaying point labels. The default is "up", since we are displaying absolute values.
- type
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available.
- smooth
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- ...
Other arguments passed to
link{xpose.plot.default}
.
Details
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
See also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, compute.cwres
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
if (FALSE) {
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
}
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
absval.cwres.vs.pred(xpdb)
## A conditioning plot
absval.cwres.vs.pred(xpdb, by="HCTZ")
## Custom heading and axis labels
absval.cwres.vs.pred(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED")
## Custom colours and symbols, no IDs
absval.cwres.vs.pred(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)