Absolute population weighted residuals vs population predictions, conditioned on covariates, for Xpose 4
Source:R/absval.wres.vs.pred.by.cov.R
absval.wres.vs.pred.by.cov.Rd
This is a plot of absolute population weighted residuals (|WRES|) vs
population predictions (PRED) conditioned by covariates, a specific function
in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
Usage
absval.wres.vs.pred.by.cov(
object,
ylb = "|WRES|",
type = "p",
smooth = TRUE,
ids = FALSE,
idsdir = "up",
main = "Default",
...
)
Arguments
- object
An xpose.data object.
- ylb
A string giving the label for the y-axis.
NULL
if none.- type
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available.
- smooth
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- ids
Logical. Should id labels on points be shown?
- idsdir
Direction for displaying point labels. The default is "up", since we are displaying absolute values.
- main
The title of the plot. If
"Default"
then a default title is plotted. Otherwise the value should be a string like"my title"
orNULL
for no plot title.- ...
Other arguments passed to
link{xpose.plot.default}
.
Details
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
See also
absval.wres.vs.pred
,
xpose.plot.default
, xpose.panel.default
,
xyplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
if (FALSE) {
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
absval.wres.vs.pred.by.cov(xpdb)
## Custom axis labels
absval.wres.vs.pred.by.cov(xpdb, ylb="|CWRES|", xlb="PRED")
## Custom colours and symbols, IDs
absval.wres.vs.pred.by.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
}