Random parameters plotted against covariates, for Xpose 4
Source:R/ranpar.vs.cov.R
ranpar.vs.cov.RdThis creates a stack of plots of Bayesian random parameter estimates plotted
against covariates, and is a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
Arguments
- object
An xpose.data object.
- onlyfirst
Logical value indicating whether only the first row per individual is included in the plot.
- smooth
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- type
The plot type - defaults to points only.
- main
The title of the plot. If
"Default"then a default title is plotted. Otherwise the value should be a string like"my title"orNULLfor no plot title.- ...
Other arguments passed to
link{xpose.plot.default}.
Details
Each of the random parameters (ETAs) in the Xpose data object, as specified
in object@Prefs@Xvardef$ranpar, is plotted against each covariate
present, as specified in object@Prefs@Xvardef$covariates, creating a
stack of plots.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default and xpose.panel.default for
details.
See also
xpose.plot.default,
xpose.plot.histogram, xyplot,
histogram, xpose.prefs-class,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw(),
absval.cwres.vs.pred(),
absval.cwres.vs.pred.by.cov(),
absval.iwres.cwres.vs.ipred.pred(),
absval.iwres.vs.cov.bw(),
absval.iwres.vs.idv(),
absval.iwres.vs.ipred(),
absval.iwres.vs.ipred.by.cov(),
absval.iwres.vs.pred(),
absval.wres.vs.cov.bw(),
absval.wres.vs.idv(),
absval.wres.vs.pred(),
absval.wres.vs.pred.by.cov(),
absval_delta_vs_cov_model_comp,
addit.gof(),
autocorr.cwres(),
autocorr.iwres(),
autocorr.wres(),
basic.gof(),
basic.model.comp(),
cat.dv.vs.idv.sb(),
cat.pc(),
cov.splom(),
cwres.dist.hist(),
cwres.dist.qq(),
cwres.vs.cov(),
cwres.vs.idv(),
cwres.vs.idv.bw(),
cwres.vs.pred(),
cwres.vs.pred.bw(),
cwres.wres.vs.idv(),
cwres.wres.vs.pred(),
dOFV.vs.cov(),
dOFV.vs.id(),
dOFV1.vs.dOFV2(),
data.checkout(),
dv.preds.vs.idv(),
dv.vs.idv(),
dv.vs.ipred(),
dv.vs.ipred.by.cov(),
dv.vs.ipred.by.idv(),
dv.vs.pred(),
dv.vs.pred.by.cov(),
dv.vs.pred.by.idv(),
dv.vs.pred.ipred(),
gof(),
ind.plots(),
ind.plots.cwres.hist(),
ind.plots.cwres.qq(),
ipred.vs.idv(),
iwres.dist.hist(),
iwres.dist.qq(),
iwres.vs.idv(),
kaplan.plot(),
par_cov_hist,
par_cov_qq,
parm.vs.cov(),
parm.vs.parm(),
pred.vs.idv(),
runsum(),
wres.dist.hist(),
wres.dist.qq(),
wres.vs.idv(),
wres.vs.idv.bw(),
wres.vs.pred(),
wres.vs.pred.bw(),
xpose.VPC(),
xpose.VPC.both(),
xpose.VPC.categorical(),
xpose4-package
Examples
if (FALSE) { # \dontrun{
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb <- xpose.data(5)
## A vanilla plot
ranpar.vs.cov(xpdb)
## Custom colours and symbols, IDs
ranpar.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
} # }