A plot showing the most and least influential individuals in determining a drop in OFV between two models.
Usage
dOFV.vs.id(
xpdb1,
xpdb2,
sig.drop = -3.84,
decrease.label.number = 3,
increase.label.number = 3,
id.lab.cex = 0.6,
id.lab.pos = 2,
type = "o",
xlb = "Number of subjects removed",
ylb = expression(paste(Delta, "OFV")),
main = "Default",
sig.line.col = "red",
sig.line.lty = "dotted",
tot.line.col = "grey",
tot.line.lty = "dashed",
key = list(columns = 1, lines = list(pch = c(super.sym$pch[1:2], NA, NA), type =
list("o", "o", "l", "l"), col = c(super.sym$col[1:2], sig.line.col, tot.line.col),
lty = c(super.sym$lty[1:2], sig.line.lty, tot.line.lty)), text =
list(c(expression(paste(Delta, OFV[i] < 0)), expression(paste(Delta, OFV[i] > 0)),
expression(paste("Significant ", Delta, OFV)), expression(paste("Total ", Delta,
OFV)))), corner = c(0.95, 0.5), border = T),
...
)
Arguments
- xpdb1
Xpose data object for first NONMEM run ("new" run)
- xpdb2
Xpose data object for Second NONMEM run ("reference" run)
- sig.drop
What is a significant drop of OFV?
- decrease.label.number
How many points should bw labeled with ID values for those IDs with a drop in iOFV?
- increase.label.number
How many points should bw labeled with ID values for those IDs with an increase in iOFV?
- id.lab.cex
Size of ID labels.
- id.lab.pos
ID label position.
- type
Type of lines.
- xlb
X-axis label.
- ylb
Y-axis label.
- main
Title of plot.
- sig.line.col
Significant OFV drop line color.
- sig.line.lty
Significant OFV drop line type.
- tot.line.col
Total OFV drop line color.
- tot.line.lty
Total OFV drop line type.
- key
Legend for plot.
- ...
Additional arguments to function.
See also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
if (FALSE) {
library(xpose4)
## first make sure that the iofv values are read into xpose
cur.dir <- getwd()
setwd(paste(cur.dir,"/LAG_TIME",sep=""))
xpdb1 <- xpose.data(1)
setwd(paste(cur.dir,"/TRANSIT_MODEL",sep=""))
xpdb2 <- xpose.data(1)
setwd(cur.dir)
## then make the plot
dOFV.vs.id(xpdb1,xpdb2)
}