Categorical (visual) predictive check plots.
Usage
cat.pc(
object,
dv = xvardef("dv", object),
idv = xvardef("idv", object),
level.to.plot = NULL,
subset = NULL,
histo = T,
median.line = F,
PI.lines = F,
xlb = if (histo) {
paste("Proportion of ", dv)
} else {
paste(idv)
},
ylb = if (histo) {
paste("Percent of Total")
} else {
paste("Proportion of Total")
},
main = xpose.create.title.text(NULL, dv, "Predictive check of", object, subset =
subset, ...),
strip = "Default",
...
)
Arguments
- object
Xpose data object.
- dv
The dependent variable (e.g.
"DV"
or"CP"
.)- idv
The independent variable (e.g.
"TIME"
.)- level.to.plot
The levels to plot.
- subset
Subset of data.
- histo
If
FALSE
then a VPC is created, given thatidv
is defined.- median.line
Make a median line?
- PI.lines
Make prediction interval lines?
- xlb
Label for x axis.
- ylb
label for y axis.
- main
Main title.
- strip
Defining how the strips should appear in the conditioning plots.
- ...
Extra arguments passed to the function.
See also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
if (FALSE) {
## read in table files
runno <- 45
xpdb <- xpose.data(runno)
## create proportion (visual) predictive check
cat.pc(xpdb,idv=NULL)
cat.pc(xpdb,idv="DOSE")
cat.pc(xpdb,idv="DOSE",histo=F)
cat.pc(xpdb,idv="TIME",histo=T,level.to.plot=1)
}