This function graphically "checks out" the dataset to identify errors or inconsistencies.
Usage
data.checkout(
obj = NULL,
datafile = ".ask.",
hlin = -99,
dotcol = "black",
dotpch = 16,
dotcex = 1,
idlab = "ID",
csv = NULL,
main = "Default",
...
)
Arguments
- obj
NULL or an xpose.data object.
- datafile
A data file, suitable for import by
read.table
.- hlin
An integer, specifying the line number on which the column headers appear.
- dotcol
Colour for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots.
- dotpch
Plotting character for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots.
- dotcex
Relative scaling for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots.
- idlab
The ID column label in the dataset. Input as a text string.
- csv
Is the data file in CSV format (comma separated values)? If the value is
NULL
then the user is asked at the command line. If supplied to the function the value can beTRUE/FALSE
.- main
The title to the plot. "default" means that Xpose creates a title.
- ...
Other arguments passed to
link[lattice]{dotplot}
.
Details
This function creates a series of dotplots
, one for each variable in
the dataset, against individual ID. Outliers and clusters may easily be
detected in this manner.
See also
dotplot
, xpose.prefs-class
,
read.table
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
if (FALSE) {
## We expect to find the required NONMEM run, table and data files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
data.checkout(xpdb5, datafile = "mydata.dta")
data.checkout(datafile = "mydata.dta")
}