Absolute individual weighted residuals vs individual predictions for Xpose 4
Source:R/absval.iwres.vs.ipred.R
absval.iwres.vs.ipred.Rd
This is a plot of absolute individual weighted residuals (|IWRES|) vs
individual predictions (IPRED), a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default
function.
Most of the options take their default values from xpose.data object but may
be overridden by supplying them as arguments.
Usage
absval.iwres.vs.ipred(
object,
ylb = "|iWRES|",
type = "p",
ids = FALSE,
idsdir = "up",
smooth = TRUE,
...
)
Arguments
- object
An xpose.data object.
- ylb
A string giving the label for the y-axis.
NULL
if none.- type
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available.
- ids
Should id values be displayed?
- idsdir
Direction for displaying point labels. The default is "up", since we are displaying absolute values.
- smooth
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
- ...
Other arguments passed to
link{xpose.plot.default}
.
Details
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
See also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
,
runsum
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
absval.iwres.vs.ipred(xpdb)
## A conditioning plot
absval.iwres.vs.ipred(xpdb, by="HCTZ")
## Custom heading and axis labels
absval.iwres.vs.ipred(xpdb, main="My conditioning plot", ylb="|IWRES|", xlb="IPRED")
## Custom colours and symbols, no IDs
absval.iwres.vs.ipred(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)