Xpose Visual Predictive Check (VPC) for both continuous and Limit of Quantification data.
Source:R/xpose.VPC.both.R
xpose.VPC.both.Rd
Xpose Visual Predictive Check (VPC) for both continuous and Below or Above Limit of Quantification (BLQ or ALQ) data.
Arguments
- vpc.info
Name of PSN file to use. File will come from
VPC
command in PsN.- vpctab
Name of vpctab file produced from PsN.
- object
Xpose data object.
- subset
Subset of data to look at.
- main
Title for plot.
- main.sub
Used for names above each plot when using multiple plots. Should be a vector, e.g.
c("title 1","title 2")
.- inclZeroWRES
Include WRES=0 rows in the computations for these plots?
- cont.logy
Should the continuous plot y-axis be on the log scale?
- hline
Horizontal line marking the limits of quantification. If they are defined, they must be a vector of values.
- add.args.cont
Additional arguments to the continuous plot.
xpose.VPC
.- add.args.cat
Additional arguments to the categorical plot.
xpose.VPC.categorical
.- ...
Additional arguments to both plots.
See also
xpose.VPC
, xpose.VPC.categorical
.
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.categorical()
,
xpose4-package
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
if (FALSE) {
library(xpose4)
## move to the directory where results from PsN
## are found
cur.dir <- getwd()
setwd(paste(cur.dir,"/vpc_cont_LLOQ/",sep=""))
xpose.VPC()
xpose.VPC.categorical(censored=T)
xpose.VPC.both()
xpose.VPC.both(subset="DV>1.75")
xpose.VPC.both(add.args.cont=list(ylim=c(0,80)))
xpose.VPC.both(add.args.cont = list(ylim = c(0.01, 80)), xlim = c(0,
40), add.args.cat = list(ylim = c(0, 0.4)), cont.logy = T)
xpose.VPC.both(cont.logy=T)
}