This building block declares a parameter model for a parameter that does not vary between subjects.
prm_no_var(name, value = 1)
name | Parameter name |
---|---|
value | Parameter value |
A building block of type 'parameter'
Parameter models specify type, name, and values for a parameter. The parameter model type is selected through the function name. The parameter name and values are provided as function arguments.
Every parameter must have a valid name. A parameter name can contain letters, numbers as well as the underscore character. The name needs to start with a letter.
Adding a parameter with an already existing name will replace the definition of the parameter. For example, the parameter “base” will have a log-normal distribution in the following snippet:
m <- model() + prm_normal("base") + prm_log_normal("base")
The parameter values that a parameter model expects vary by type. For
example, prm_normal()
requires the mean and the variance, whereas for
prm_log_normal()
median and variance on the log scale need to be
provided. The argument name should indicate what parameter value is
expected.
assemblerr
can include mu-referencing statements for parameter
distributions that support it. The functionality can be activated by
setting the option prm.use_mu_referencing
to TRUE
as shown in the
following snippet:
m <- model() + prm_normal("base") + prm_log_normal("slp") + obs_additive(response~base+slp*time) render( model = m, options = assemblerr_options(prm.use_mu_referencing = TRUE) )
Other parameter models:
prm_log_normal()
,
prm_logit_normal()
,
prm_normal()
# EMAX dose-response model with emax (log-normal) and ed50 (no variability) parameters m2 <- model() + input_variable("dose") + prm_log_normal("emax", 10, 0.3) + prm_no_var("ed50", 5) + obs_proportional(effect~emax*dose/(ed50+dose)) # a log-normal parameter that is directly observed m <- model() + prm_log_normal("wt") + obs_additive(~wt)