Conditional Weighted residuals (CWRES) plotted against covariates, for Xpose 4
Source:R/cwres.vs.cov.R
cwres.vs.cov.RdThis creates a stack of plots of conditional weighted residuals (CWRES)
plotted against covariates, and is a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default and
xpose.plot.histogram functions. Most of the options take their
default values from xpose.data object but may be overridden by supplying
them as arguments.
Arguments
- object
An xpose.data object.
- ylb
A string giving the label for the y-axis.
NULLif none.- smooth
A
NULLvalue indicates that no superposed line should be added to the graph. IfTRUEthen a smooth of the data will be superimposed.- type
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines.
- main
The title of the plot. If
"Default"then a default title is plotted. Otherwise the value should be a string like"my title"orNULLfor no plot title.- ...
Other arguments passed to
link{xpose.plot.default}orlink{xpose.plot.histogram}.
Details
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates, is evaluated in turn, creating a
stack of plots.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres for details.
A wide array of extra options controlling xyplots and histograms are
available. See xpose.plot.default and
xpose.plot.histogram for details.
See also
xpose.plot.default,
xpose.plot.histogram, xyplot,
histogram, xpose.prefs-class,
compute.cwres, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw(),
absval.cwres.vs.pred(),
absval.cwres.vs.pred.by.cov(),
absval.iwres.cwres.vs.ipred.pred(),
absval.iwres.vs.cov.bw(),
absval.iwres.vs.idv(),
absval.iwres.vs.ipred(),
absval.iwres.vs.ipred.by.cov(),
absval.iwres.vs.pred(),
absval.wres.vs.cov.bw(),
absval.wres.vs.idv(),
absval.wres.vs.pred(),
absval.wres.vs.pred.by.cov(),
absval_delta_vs_cov_model_comp,
addit.gof(),
autocorr.cwres(),
autocorr.iwres(),
autocorr.wres(),
basic.gof(),
basic.model.comp(),
cat.dv.vs.idv.sb(),
cat.pc(),
cov.splom(),
cwres.dist.hist(),
cwres.dist.qq(),
cwres.vs.idv(),
cwres.vs.idv.bw(),
cwres.vs.pred(),
cwres.vs.pred.bw(),
cwres.wres.vs.idv(),
cwres.wres.vs.pred(),
dOFV.vs.cov(),
dOFV.vs.id(),
dOFV1.vs.dOFV2(),
data.checkout(),
dv.preds.vs.idv(),
dv.vs.idv(),
dv.vs.ipred(),
dv.vs.ipred.by.cov(),
dv.vs.ipred.by.idv(),
dv.vs.pred(),
dv.vs.pred.by.cov(),
dv.vs.pred.by.idv(),
dv.vs.pred.ipred(),
gof(),
ind.plots(),
ind.plots.cwres.hist(),
ind.plots.cwres.qq(),
ipred.vs.idv(),
iwres.dist.hist(),
iwres.dist.qq(),
iwres.vs.idv(),
kaplan.plot(),
par_cov_hist,
par_cov_qq,
parm.vs.cov(),
parm.vs.parm(),
pred.vs.idv(),
ranpar.vs.cov(),
runsum(),
wres.dist.hist(),
wres.dist.qq(),
wres.vs.idv(),
wres.vs.idv.bw(),
wres.vs.pred(),
wres.vs.pred.bw(),
xpose.VPC(),
xpose.VPC.both(),
xpose.VPC.categorical(),
xpose4-package


