Categorical (visual) predictive check plots.
Usage
cat.pc(
object,
dv = xvardef("dv", object),
idv = xvardef("idv", object),
level.to.plot = NULL,
subset = NULL,
histo = T,
median.line = F,
PI.lines = F,
xlb = if (histo) {
paste("Proportion of ", dv)
} else {
paste(idv)
},
ylb = if (histo) {
paste("Percent of Total")
} else {
paste("Proportion of Total")
},
main = xpose.create.title.text(NULL, dv, "Predictive check of", object, subset =
subset, ...),
strip = "Default",
...
)Arguments
- object
Xpose data object.
- dv
The dependent variable (e.g.
"DV"or"CP".)- idv
The independent variable (e.g.
"TIME".)- level.to.plot
The levels to plot.
- subset
Subset of data.
- histo
If
FALSEthen a VPC is created, given thatidvis defined.- median.line
Make a median line?
- PI.lines
Make prediction interval lines?
- xlb
Label for x axis.
- ylb
label for y axis.
- main
Main title.
- strip
Defining how the strips should appear in the conditioning plots.
- ...
Extra arguments passed to the function.
See also
Other specific functions:
absval.cwres.vs.cov.bw(),
absval.cwres.vs.pred(),
absval.cwres.vs.pred.by.cov(),
absval.iwres.cwres.vs.ipred.pred(),
absval.iwres.vs.cov.bw(),
absval.iwres.vs.idv(),
absval.iwres.vs.ipred(),
absval.iwres.vs.ipred.by.cov(),
absval.iwres.vs.pred(),
absval.wres.vs.cov.bw(),
absval.wres.vs.idv(),
absval.wres.vs.pred(),
absval.wres.vs.pred.by.cov(),
absval_delta_vs_cov_model_comp,
addit.gof(),
autocorr.cwres(),
autocorr.iwres(),
autocorr.wres(),
basic.gof(),
basic.model.comp(),
cat.dv.vs.idv.sb(),
cov.splom(),
cwres.dist.hist(),
cwres.dist.qq(),
cwres.vs.cov(),
cwres.vs.idv(),
cwres.vs.idv.bw(),
cwres.vs.pred(),
cwres.vs.pred.bw(),
cwres.wres.vs.idv(),
cwres.wres.vs.pred(),
dOFV.vs.cov(),
dOFV.vs.id(),
dOFV1.vs.dOFV2(),
data.checkout(),
dv.preds.vs.idv(),
dv.vs.idv(),
dv.vs.ipred(),
dv.vs.ipred.by.cov(),
dv.vs.ipred.by.idv(),
dv.vs.pred(),
dv.vs.pred.by.cov(),
dv.vs.pred.by.idv(),
dv.vs.pred.ipred(),
gof(),
ind.plots(),
ind.plots.cwres.hist(),
ind.plots.cwres.qq(),
ipred.vs.idv(),
iwres.dist.hist(),
iwres.dist.qq(),
iwres.vs.idv(),
kaplan.plot(),
par_cov_hist,
par_cov_qq,
parm.vs.cov(),
parm.vs.parm(),
pred.vs.idv(),
ranpar.vs.cov(),
runsum(),
wres.dist.hist(),
wres.dist.qq(),
wres.vs.idv(),
wres.vs.idv.bw(),
wres.vs.pred(),
wres.vs.pred.bw(),
xpose.VPC(),
xpose.VPC.both(),
xpose.VPC.categorical(),
xpose4-package
Examples
if (FALSE) { # \dontrun{
## read in table files
runno <- 45
xpdb <- xpose.data(runno)
## create proportion (visual) predictive check
cat.pc(xpdb,idv=NULL)
cat.pc(xpdb,idv="DOSE")
cat.pc(xpdb,idv="DOSE",histo=F)
cat.pc(xpdb,idv="TIME",histo=T,level.to.plot=1)
} # }